教授學堂 | Knowledge

2018-06-01

鯊魚軟骨能治癌嗎?

過去三十多年來,鯊魚的軟骨被用來治療各種疾病,例如癌症、乾癬、關節炎、骨質疏鬆症、潰瘍性大腸炎、局部性腸炎、青春痘、硬皮症、痔瘡、過敏性皮膚炎 [1-19]。其中令人注意的是癌症治 療,原因之一是很多人以為鯊魚不會得癌症。由於在鯊魚的骨骼中軟骨約佔6% [16, 18, 20],而牛的骨骼中軟骨佔不到1% [18],所以鯊魚骨骼自然就引人注意。

由於軟骨裡面沒有血管,因此有假說認為,軟骨細胞可以產生某種成份來抑制血管的形成 [21-27]。新血管的形成,又謂之「血管新生 (angiogenesis)」,被認為是腫瘤要成長超過幾毫米直徑所必要的步驟。也就是說,腫瘤要超過十萬到一百萬個細胞的時候,它需要有血管帶來氧氣和營養 [28-34]。因此,除非腫瘤接上宿主的循環系統,否則它是無法繼續成長的。

血管新生需要至少四個步驟。首先,腫瘤必須讓血管的內皮細胞分泌血管新生因子,例如血 內皮生長因子 (vascular endothelial growth factor; VEGF) [31-35]。接著,活化的內皮細胞必須複製分裂產生新的內皮細胞 [32, 34-37];再來,複製分裂中的內皮細胞必須朝向腫瘤移動 [32-37];最後,新的內皮細胞必須形成一個中空的管子來變成新的血管 [34, 35]。有研究發現,腫瘤細胞達到一百個的時候,就啟動血管新生了[33]。如果能在這麼早期時就抑制血管新生,那麼就有可能讓腫瘤完全退化 [33]。因此,有許多的動物研究,觀察軟骨製品對雞胚胎、絨毛尿囊膜 (chorioallantonic membrane)、兔子角膜或老鼠結膜之血管的形成 [21, 22, 25, 27, 38-44]。在動物研究中,軟骨產品以各種方式來給予動物,有些研究是口服液體或粉末狀的軟骨產品 [15, 19, 41, 43, 45-48],也有些研究是以注射、外敷或植入的方式給予軟骨產品 [21, 22, 25, 27, 28, 38-44]。

軟骨的主要結構成份是膠原纖維蛋白和幾種的醣胺聚多醣 (glycosaminoglycan),而硫酸軟骨素 (chondroitin sulfate) 是軟骨中主要的醣胺聚多醣 [34, 45]。目前有證據指出,鯊魚軟骨含有至少一種血管新生抑制劑,它是一種醣胺聚多醣成份 [44]。 其他資料指出,軟骨中大部分抗血管新生的活性並非來自軟骨的主要結構成份 [24, 27, 38]。

除了抑制血管新生,軟骨還有一些醣胺聚多醣具有抗發炎和刺激免疫的能力 [1, 2, 14, 16, 49, 50],有人認為這些物質或是其分解產物對腫瘤細胞有毒性 [2, 3, 51]。此外,正常軟骨對於外來腫瘤細胞的侵犯具有相 當的抵抗力 [23-25, 27, 29, 44, 52, 53],所以,腫瘤細胞需使用基質金屬蛋白酶 (matrix metalloproteinase) 從利其轉移 [47, 52, 54, 55]。顯然,軟骨裡面確實有幾種成份具有抗腫瘤的活性 [2-4, 7, 15-19, 21-23, 38, 51, 54]。因此,軟骨的抗腫瘤能力機轉可能不只一種。如果軟骨中血管新生的抑制因子也能夠抑制基質金屬蛋白酶的話,那麼同一個分子就能同時抑制血管新生和抑制腫瘤轉移了。

有研究指出,就同等重量而言,鯊魚軟骨的抗血管新生活性比牛的軟骨還要強一千倍 [40]。由於有可能從鯊魚軟骨萃取血管新生的抑制子,這個想法自然引起了治療癌症的研究。從 1970 年起,已有十幾個臨床實驗以軟骨來治療癌症病人 [2-4, 6-9, 15-18, 56, 57]。近年來,美國國立癌症研究所也用軟骨萃取物對非小細胞肺癌 (MDA-ID-99303)、多發性骨髓瘤 (AETERNA-AE- MM-00-02)、大腸癌和乳癌(NCCTG-971151)進行臨床試驗。將 379 名使用化療和電療之非小細胞肺癌的病人,以隨機分布雙盲的第三期臨床試驗來比較鯊魚軟骨 (n=188) 和安慰劑 (n=191) 的療效,結果發現兩處的整體存活率並沒有統計學上的差別 [58]。對於 83 名無法治癒的乳癌和大腸直腸癌病人,以隨機分布的方法接受鯊魚軟骨或安慰劑加上標準療法,試驗結果發現,這兩組病人的存活率或生活品質並沒有差異 [59]。

目前各國衛生主管機關並未核准使用軟骨來治療癌症或其他疾病。所以軟骨產品在市面上都是以健康食品販售。由於健康食品不是藥品,因此食藥署不會要求作上市前評估,除非該產品宣稱能夠預防或治療某種疾病。也因如此,軟骨產品的製造商不作此宣稱,以避免被要求提出證據顯示其產品具有抗癌和其它生物的效能。在此灰色地帶,百家爭鳴,以致目前美國在市面上竟有四十多種品牌的鯊魚軟骨 [17]。

目前看來,我們還不知道可否用鯊魚軟骨治癌,不過我們倒是知道,鯊魚自已的確可罹患各種癌症 [20, 60-62]。

 

引用文獻

  1. Prudden JF, Balassa LL. The biological activity of bovine cartilage preparations. Clinical demonstration of their potent anti-inflammatory capacity with supplementary notes on certain relevant fundamental supportive studies. Semin Arthritis Rheum 1974 Summer;3:287-321.

  2. Prudden JF. The treatment of human cancer with agents prepared from bovine cartilage. J Biol Response Mod 1985;4:551-584.

  3. Romano CF, Lipton A, Harvey HA, et al. A phase II study of Catrix-S in solid tumors. J Biol Response Mod 1985;4:585- 589.

  4. Puccio C, Mittelman A, Chun P, et al. Treatment of metastatic renal cell carcinoma with Catrix. [Abstract] Proceedings of the American Society of Clinical Oncology 1994;13:A-769,246.

  5. Dupont E, Savard PE, Jourdain C, et al. Antiangiogenic properties of a novel shark cartilage extract: potential role in the treatment of psoriasis. J Cutan Med Surg 1998;2:146-152.

  6. Falardeau P, Champagne P, Poyet P, et al. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol 2001;28:620-625.

  7. Miller DR, Anderson GT, Stark JJ, et al. Phase I/II trial of the safety and efficacy of shark cartilage in the treatment of advanced cancer. J Clin Oncol 1998;16:3649-3655.

  8. Leitner SP, Rothkopf MM, Haverstick L, et al. Two phase II studies of oral dry shark cartilage powder (SCP) with either metastatic breast or prostate cancer refractory to standard treatment. [Abstract] Proceedings of the American Society of Clinical Oncology 1998;17:A-240.

  9. Rosenbluth RJ, Jennis AA, Cantwell S, et al. Oral shark cartilage in the treatment of patients with advanced primary brain tumors. [Abstract] Proceedings of the American Society of Clinical Oncology 1999;18:A-554.

  10. Iandoli R. Shark cartilage in the treatment of psoriasis. Dermatologia Clinica 2001;21:39-42.

  11. Milner M. A guide to the use of shark cartilage in the treatment of arthritis and other inflammatory joint diseases. American Chiropractor 1999;21:40-42.

  12. Himmel PB, Seligman TM. Treatment of systemic sclerosis with shark cartilage extract. Journal of Orthomolecular Medicine 1999;14:73-77.

  13. Sorbera LA, Castañer RM, Leeson PA. AE-941. Oncolytic, antipsoriatic, treatment of age-related macular degeneration, angiogenesis inhibitor. Drugs Future 2000;25:551-557.

  14. Prudden JF, Migel P, Hanson P, et al. The discovery of a potent pure chemical wound-healing accelerator. Am J Surg 1970;119:560-564.

  15. AE 941--Neovastat. Drugs R D 1999;1:135-136.

  16. Cassileth BR. Shark and bovine cartilage therapies. In: Cassileth BR, editors. The Alternative Medicine Handbook: The Complete Reference Guide to Alternative and Complementary Therapies. New York, NY: WW Norton & Company 1998;197-200.

  17. Holt S. Shark cartilage and nutriceutical update. Altern Complement Ther 1995;1:414-416.

  18. Hunt TJ, Connelly JF. Shark cartilage for cancer treatment. Am J Health Syst Pharm 1995;52:1756,1760.

  19. Fontenele JB, Araújo GB, de Alencar JW, et al. The analgesic and anti-inflammatory effects of shark cartilage are due to a peptide molecule and are nitric oxide (NO) system dependent. Biol Pharm Bull 1997;20:1151-1154.

  20. Finkelstein JB. Sharks do get cancer. few surprises in cartilage research. J Natl Cancer Inst 2005;97:1562-1563.

  21. Moses MA, Sudhalter J, Langer R. Isolation and characterization of an inhibitor of neovascularization fromscapular chondrocytes. J Cell Biol 1992;119:475-482.

  22. Moses MA. A cartilage-derived inhibitor of neovascularization and metalloproteinases. Clin Exp Rheumatol 1993 Mar-Apr;11:S67-69.

  23. Takigawa M, Pan HO, Enomoto M, et al. A clonal human chondrosarcoma cell line produces an anti-angiogenic antitumor factor. Anticancer Res 1990;10:311-315.

  24. Ohba Y, Goto Y, Kimura Y, et al. Purification of an angiogenesis inhibitor from culture medium conditioned by a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8. Biochim Biophys Acta 1995;1245:1-8.

  25. Takigawa M, Shirai E, Enomoto M, et al. A factor in conditioned medium of rabbit costal chondrocytes inhibits the proliferation of cultured endothelial cells and angiogenesis induced by B16 melanoma: its relation with cartilage-derived anti-tumor factor (CATF). Biochem Int 1987;14: 357-363.

  26. Hiraki Y, Inoue H, Iyama K, et al. Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 1997;272:32419-32426.

  27. Suzuki F. Cartilage-derived growth factor and antitumor factor: past, present, and future studies. Biochem Biophys Res Commun 1999;259:1-7.

  28. Langer R, Conn H, Vacanti J, et al. Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc Natl Acad Sci U S A 1980;77:4331-4335.

  29. Takigawa M, Shirai E, Enomoto M, et al. Cartilage-derived anti-tumor factor (CATF) inhibits the proliferation of endothelial cells in culture. Cell Biol Int Rep 1985;9:619- 925.

  30. McGuire TR, Kazakoff PW, Hoie EB, et al. Antiproliferative activity of shark cartilage with and without tumor necrosis factor-alpha in human umbilical vein endothelium. Pharmacotherapy 1996 Mar-Apr;16:237-244.

  31. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992;3:65-71.

  32. Sipos EP, Tamargo RJ, Weingart JD, et al. Inhibition of tumor angiogenesis. Ann N Y Acad Sci 1994;732:263-72.

  33. Li CY, Shan S, Huang Q, et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 2000;92:143-147.

  34. Alberts B, Bray D, Lewis J, et al. Molecular Biology of the Cell. 3rd ed. New York, NY: Garland Publishing, 1994.

  35. Moses MA. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 1997;15:180-189.

  36. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999;103:1237-1241.

  37. Haas TL, Madri JA. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med 1999 Apr-May;9:70-77.

  38. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990;248:1408-1410.

  39. Langer R, Brem H, Falterman K, et al. Isolations of a cartilage factor that inhibits tumor neovascularization. Science 1976;193:70-72.

  40. Lee A, Langer R. Shark cartilage contains inhibitors of tumor angiogenesis. Science 1983;221:1185-1187.

  41. Sheu JR, Fu CC, Tsai ML, et al. Effect of U-995, a potent shark cartilage-derived angiogenesis inhibitor, on anti-angiogenesis and anti-tumor activities. Anticancer Res 1998 Nov-Dec;18:4435-4441.

  42. Oikawa T, Ashino-Fuse H, Shimamura M, et al. A novel angiogenic inhibitor derived from Japanese shark cartilage  (I). Extraction and estimation of inhibitory activities toward tumor and embryonic angiogenesis. Cancer Lett 1990;51:181-186.

  43. Dupont E, Falardeau P, Mousa SA, et al. Antiangiogenic and antimetastatic properties of Neovastat (AE-941), an orally active extract derived from cartilage tissue. Clin Exp Metastasis 2002;19:145-153.

  44. Liang JH, Wong KP. The characterization of angiogenesis inhibitor from shark cartilage. Adv Exp Med Biol 2000;476:209-223.

  45. Davis PF, He Y, Furneaux RH, et al. Inhibition of angiogenesis by oral ingestion of powdered shark cartilage in a rat model. Microvasc Res 1997;54:178-182.

  46. Morris GM, Coderre JA, Micca PL, et al. Boron neutron capture therapy of the rat 9L gliosarcoma: evaluation of the effects of shark cartilage. Br J Radiol 2000;73:429-434.

  47. Wojtowicz-Praga S. Clinical potential of matrix metalloprotease inhibitors. Drugs R D 1999;1:117-129.

  48. Horsman MR, Alsner J, Overgaard J. The effect of shark cartilage extracts on the growth and metastatic spread of the SCCVII carcinoma. Acta Oncol 1998;37:441-445.

  49. Rosen J, Sherman WT, Prudden JF, et al. Immunoregulatory effects of catrix. J Biol Response Mod

    1988;7:498-512.

  50. Houck JC, Jacob RA, Deangelo L, et al. The inhibition of inflammation and the acceleration of tissue repair by cartilage powder. Surgery 1962;51:632-638.

  51. Durie BG, Soehnlen B, Prudden JF. Antitumor activity of bovine cartilage extract (Catrix-S) in the human tumor stem cell assay. J Biol Response Mod 1985;4:590-595.

  52. Sadove AM, Kuettner KE. Inhibition of mammary carcinoma invasiveness with cartilage-derived inhibitor. Surg Forum 1977;28:499-501.

  53. Pauli BU, Memoli VA, Kuettner KE. Regulation of tumor invasion by cartilage-derived anti-invasion factor in vitro. J Natl Cancer Inst 1981;67:65-73.

  54. Murray JB, Allison K, Sudhalter J, et al. Purification and partial amino acid sequence of a bovine cartilage-derived collagenase inhibitor. J Biol Chem 1986;261:4154-4159.

  55. McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000;6:149-156.

  56. Batist G, Champagne P, Hariton C, et al. Dose-survival relationship in a phase II study of Neovastat in refractory renal cell carcinoma patients. [Abstract] Proceedings of the American Society of Clinical Oncology 2002;21:A-1907.

  57. Loprinzi CL, Levitt R, Barton DL, et al. Evaluation of shark cartilage in patients with advanced cancer: a North Central Cancer Treatment Group trial. Cancer 2005;104:176-182.

  58. Lu C, Lee JJ, Komaki R, et al. Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst 2010;102:859-865.

  59. Loprinzi CL, Levitt R, Barton DL, et al. Evaluation of shark cartilage in patients with advanced cancer: a North Central Cancer Treatment Group trial. Cancer 2005;104:176-182.

  60. Ostrander GK, Cheng KC, Wolf JC, et al. Shark cartilage, cancer and the growing threat of pseudoscience. Cancer Res 2004;64:8485-8491.

  61. Schlumberger HG, Lucke B. Tumors of fishes, amphibians, and reptiles. Cancer Res 1948;8:657-754.

  62. Wellings SR. Neoplasia and primitive vertebrate phylogeny: echinoderms, prevertebrates, and fishes--A review. Natl Cancer Inst Monogr 1969;31:59-128.